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In a Herd? Herding with costly observation and 
an unknown number of predecessors*
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We consider a sequential decision to adopt/not adopt a technology in a herding 
environment with costly observation. The novelty compared to the previous models 
on herding with costly observation, such as Kultti and Miettinen (2006a), is that 
the agents do not know how many other agents have been in the same situation 
earlier. It turns out that herding no longer arises deterministically. We show that 
when observation costs are low there exists a unique symmetric pure strategy 
equilibrium where all agents observe the actions of two immediate predecessors 
in order to find out whether they are in a herd or not. (JEL: D82, D83)

1.  Introduction

Herding is defined as a situation where an agent, 
who observes other agents, ignores her own in-
formation in favour of the actions of the agents 
she observes. Banerjee (1992) and Bikhchan-
dani et al. (1992) showed that herding arises 
eventually in a model with sequential decisions. 
Herding follows directly from applying Bayes’s 
rule to a sequential problem, with private sig-

nals, where agents observe the choices of oth-
ers. A good presentation and overview of the 
literature on herding is the textbook by Cham-
ley (2004).

The basic set-up is a sequence of n agents 
who have to make a decision. Each agent ob-
serves the choices of those before her but not 
their private information. Based on these obser-
vations and the agent’s own information the 
agent then makes her choice. The models nor-
mally lead with positive probability to herding. 
Kultti and Miettinen (2006a) consider a situa-
tion where information about predecessors’ ac-
tions is costly. They find that with moderate 
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costs herding arises deterministically since from 
the fourth agent onwards all agents observe only 
their immediate predecessor’s action and con-
form to it regardless of their own information.

This paper aims to render the basic set-up 
more symmetric. We postulate that the agents 
do not know their position in the sequence. The 
question then becomes how many predecessors’ 
actions (hereafter predecessors) to observe. 
There are n agents who decide whether to adopt 
a new technology or not. Agents must ex ante 
decide how many predecessors to observe. We 
show that with a small enough observation cost 
g  there exists a unique symmetric pure strategy 
equilibrium where all agents observe two im-
mediate predecessors in order to find out, if a 
herd has formed. If a herd has formed, the agent 
follows it regardless of her own information. If 
no herd has formed, the agent acts according to 
her own information. Thus, in this setting herd-
ing arises probabilistically.

A number of other modelling choices could 
clearly have been made. Closest to the current 
paper would be a model with costly observation 
where players do not know who their immediate 
predecessors are and just observe a sample of 
players that moved before. This model would be 
a variant of Smith and Sørensen (2008).

2.  The Model

There are n agents who make a decision wheth-
er to adopt a new technology or not. They act 
sequentially, but do not know the their position 
in the sequence. Therefore the problem is ex 
ante symmetric. Otherwise the model is similar 
to Kultti and Miettinen (2006a): The new tech-
nology/ product can be either good or bad. 
There are two possible states of the world W = 
{ω, ϖ},where ω denotes the good and ϖ the bad 
state of the world. If the state of the world is 
good the adopting agent receives a benefit b, if 
the state of the world is bad the agent receives 
benefit b L which is normalized to zero. The cost
of adoption is c = b

2 for all agents and all states.
Both states are equally likely, i.e., Pr[ω] = 1

2

= Pr[ϖ]. Agent i receives a signal about the state 
of the world; Si denotes a signal that the state of 
the world is good and ®Si denotes a signal that 

the state of the world is bad. The conditional 
probabilities of the signals are Pr [S | ω] = p =
Pr [ ®S | ϖ] > 1

2 and Pr [S | ϖ] = (1– p) = Pr [ ®S | ω]
< 1

2.
The agents are not able to observe their pred-

ecessors unless they pay an observation fee g 
per predecessor. Let Ai denote agent i’s choice 
of adopting and ®Ai denote her choice of not 
adopting, and let k denote the number of im-
mediate predecessors the agent observes. For 
instance, k = 2 denotes a situation in which the 
agent chooses to observe the actions of two im-
mediate predecessors. The agents use Bayes’s 
rule to update their beliefs about the state of the 
world after making the observation.

The timing is as follows: Each agent gets a 
signal S or ®S, after this the agent decides how 
many immediate predecessors to observe (given 
the observation cost g ). Then the agent chooses 
whether to adopt the new technology or not.

3.  Symmetric equilibria

We construct a symmetric pure strategy equilib-
rium of the game. The first candidate for an 
equilibrium is one where no agent pays to ob-
serve the actions of her predecessors.

3.1  Observing no predecessors

It is clear that we could construct an equilibrium 
where no agent observes any predecessors by 
setting the cost of observation high enough. We 
are, however, interested in finding symmetric 
equilibria where all agents observe some im-
mediate predecessors. These equilibria might 
exist when observation costs are low or moder-
ate. We define moderate observation costs as 
costs that are lower than prohibitive so that an 
agent i breaks the tentative k = 0 equilibrium, 
where the agents don’t observe anyone.

If no-one observes anyone and the agent re-
ceives signal S her expected utility from adopt-

ing is E [U (Ai) | Si] = Pr [ω  | Si] b – c =         > 0.

The expected utility from adopting when receiv-
ing signal ®S is E [U (Ai) | ®Si] = Pr [ω | ®Si] b – c =
(1

2 – p) b < 0. Therefore the agent adopts only
if she receives signal S.

b (2p –1)
2
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A deviation to k = 1 cannot be profitable for 
an agent with signal S. To see this first note that 
the agent observing a predecessor expects posi-
tive utility from adopting only if her predeces-
sor (who acted on her own signal only) also has 
adopted. As {Pr [Ai –1, Si] E [U (Ai) | Si; Ai –1]} =

       b for all agents i > 1 (the first agent would

expect to get         b as well) and the observation

cost g  is positive, the deviation is not profitable. 
With signal ®S the argument is similar.

Can it be optimal to deviate from the tenta-
tive k = 0 equilibrium by choosing k = 2, i.e. 
observing the actions of two predecessors? 
Again, remember that in a tentative k = 0 equi-
librium the actions are completely informative 
of the signals. Note that the first agent cannot 
observe any predecessors even though she has 
paid to observe two, likewise the second agent 
will only be able to observe the action of the 
first agent. If the second agent’s signal is differ-
ent from the first agent’s action the second agent 
will be indifferent between adopting and not 
adopting. To simplify the analysis we assume 
that an indifferent agent follows her own signal. 
Then both the first and the second agents learn 
their position in the sequence by observing two 
predecessors and play according to their own

signal S and thus receive      . If an agent ob-

serves two negative actions ®A she will not adopt 
and will therefore receive 0. If the agent ob-
serves one or two positive actions A she will 
adopt. We denote an agent’s expected utility un-
der the optimal decision by E* [U (Ai) | Si]. Thus 
when an agent receives signal S the expected 
utility from a k = 2 deviation under the de-
scribed optimal decision is
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If observation cost g  is small enough the devia-
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Therefore, given that n > 2 a deviation from 
the k = 0 equilibrium to k = 2 is profitable if 
player i receives a good signal S and the obser-
vation cost g  is small enough. Given signal ®S we 
have under the optimal decision E [U (Ai) | ®Si] =

0 + 0 +                       b. As                       b > 0

it  is  again  profitable  for  the  agent  to  observe 
her two preceding agents if observation cost g 
is small enough. We define costs as moderate 
when  a  deviation  from  the  k  =  0  strategy  to 
k = 2 becomes profitable, i.e., when
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3.2  Observing exactly one predecessor

Claim 1  It can not be an equilibrium for all 
agents to observe exactly one predecessor.

Proof  To see this note that the nth agent observ-
ing the (n – 1)th agent can observe one of the 
following: SA, S ®A, ®SA, ®S ®A. With information SA 
the agent will adopt for sure and with informa-
tion ®S ®A the agent will not adopt. In order for 
observing and adopting (also in case of conflict-
ing signals) to be an equilibrium the predeces-
sor’s action would have to be a stronger signal 
on the state of the world than the agent’s own 
signal. Assuming signal Sn, observing ®An –1 
would then lead agent n to not adopt (and vice 
versa). This is because there would be more in-
formation in  ®An –1 than in Sn. But if observing the 
previous agent’s decision and imitating her ac-
tion were an equilibrium strategy it would lead 
to agent 1’s signal determining the action of all 
n agents. Thus, observing one’s immediate 
predecessor and adopting to her behavior can-
not be optimal as the signals Si are assumed to 
be independent and equally informative of the 
state and the observation cost g  is positive.

If the previous agent’s action is a weaker sig-
nal of the state of the world than the agents own 
signal then the agent can not gain enough infor-
mation by observing its immediate predecessor 

2p –1
2

2p –1
2
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2

n –2
n

p (1– p) [2p –1]
2

n –2
n

p (1– p) [2p –1]
2

1  Note that we have omitted the observation costs from 
the numbered equations in this section. We will, however, 
explicitely use them later when we compare the expected 
utility from the k = 2 equilibrium to the expected utilities 
from possible deviations.

1
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to reverse her own action. Given that g , the cost 
of observing a predecessor, is positive the agent 
will never observe only one predecessor. Ob-
serving only one predecessor is therefore not an 
equilibrium of the game. 

3.3  Observing two predecessors

In this section we construct a symmetric equi-
librium where all agents observe the actions of 
two immediate predecessors. We then define 
low observation costs that allow for this equi-
librium as low.

Claim 2  When observation costs are low it is an 
equilibrium for all players to observe the ac-
tions of two predecessors.

Before considering a sequence with n agents we 
illustrate the situation in a sequence where there 
are only four agents.

3.3.1  A sequence with four agents

Assume that an agent receives signal S and ob-
serves two predecessors, i.e., k = 2. A player’s 
probability of being the first or second in the 
sequence is 1

2. She would then observe either
one or two empty actions and learn her position 
in the sequence and act according to her own 
signal only. The expected utility of adopting

would be (     ) b (minus the observation cost

2g ). The actions of the first and second agents 
are thus completely informative of their signals. 
The agent knows that if she is third in the 
sequence  her  possible  observations  are  A1,  A2 
or  ®A1, A2  or  A1,  ®A2  or  ®A1,  ®A2. In  case  she  ob-
serves   ®A1,   ®A2   her   expected   utility   from   adopt-
ing would be negative and she would not adopt, 
therefore her expected utility under the optimal 
decision would be zero. The expected utility 
under the optimal decision assuming that the 
agent is third, observes two predecessors and 
receives signal Si is
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The agent would, in a similar way, reason that 
if she were fourth and observed ®A2, ®A3 the ex-
pected utility from adopting would be negative 
and she would not adopt whereas A2, A3 would 
lead her to adopt for sure. The only possible 
difference in behavior between the fourth and 
third agent stems from the fact that E [U4 (A4) 
| S4; A2, ®A3] is zero for the fourth agent whereas 
E [U3 (A3) | S3; A1, ®A2] is positive for the third 
agent. (This is because having seen A2, ®A3 the 
fourth agent knows that if she is fourth the sig-
nals must have been ®S1, S2, ®S3 in equilibrium.) 
Note, however, that the agent adopts (and fol-
lows her own signal) as the expected utility 
from adopting is positive (she doesn’t know 
whether she is third or fourth) The expected 
utility for an agent with signal S who knows 
that she is fourth and observes two predecessors 
is, thus, under the optimal decision
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Now in equilibrium the signals leading to A2, A3 
are either S1, S2, S3 or ®S1, S2, S3, or S1, S2, ®S3. The 
last two are equally likely and give the same 
expected utility. The only set of signals leading 
to  ®A2, A3 under optimal decisions are S1, ®S2, S3. 
This is due to the fact that in equilibrium the 
third agent has seen the actions of two predeces-
sors.

We now have

(5) 

�� [�3(�3)|�3] = Pr [�1� �2|�3]� [� (�3) |�3;�1� �2] + 2Pr
£
�1�2|�3

¤
�
£
� (�3) |�3;�1� �2

¤

=
£
�3(3� 2�)� (1 + 2�)(1� �)3¤ �

2
�

�� [�4(�4)|�4] = Pr [�2� �3|�4]� [�4 (�4) |�4;�2� �3] + Pr
£
�2� �3|�4

¤
�
£
�4(�4)|�4;�2� �3

¤
�

�� [�4(�4)|�4] = Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

+Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
+Pr

£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

= Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + 3Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
	

�� [�3(�3)|�3] = Pr [�1� �2|�3]� [� (�3) |�3;�1� �2] + 2Pr
£
�1�2|�3

¤
�
£
� (�3) |�3;�1� �2

¤

=
£
�3(3� 2�)� (1 + 2�)(1� �)3¤ �

2
�

�� [�4(�4)|�4] = Pr [�2� �3|�4]� [�4 (�4) |�4;�2� �3] + Pr
£
�2� �3|�4

¤
�
£
�4(�4)|�4;�2� �3

¤
�

�� [�4(�4)|�4] = Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

+Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
+Pr

£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

= Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + 3Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
	

�� [�3(�3)|�3] = Pr [�1� �2|�3]� [� (�3) |�3;�1� �2] + 2Pr
£
�1�2|�3

¤
�
£
� (�3) |�3;�1� �2

¤

=
£
�3(3� 2�)� (1 + 2�)(1� �)3¤ �

2
�

�� [�4(�4)|�4] = Pr [�2� �3|�4]� [�4 (�4) |�4;�2� �3] + Pr
£
�2� �3|�4

¤
�
£
�4(�4)|�4;�2� �3

¤
�

�� [�4(�4)|�4] = Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

+Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
+Pr

£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

= Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + 3Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
	

�� [�3(�3)|�3] = Pr [�1� �2|�3]� [� (�3) |�3;�1� �2] + 2Pr
£
�1�2|�3

¤
�
£
� (�3) |�3;�1� �2

¤

=
£
�3(3� 2�)� (1 + 2�)(1� �)3¤ �

2
�

�� [�4(�4)|�4] = Pr [�2� �3|�4]� [�4 (�4) |�4;�2� �3] + Pr
£
�2� �3|�4

¤
�
£
�4(�4)|�4;�2� �3

¤
�

�� [�4(�4)|�4] = Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

+Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
+Pr

£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

= Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + 3Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
	

�� [�3(�3)|�3] = Pr [�1� �2|�3]� [� (�3) |�3;�1� �2] + 2Pr
£
�1�2|�3

¤
�
£
� (�3) |�3;�1� �2

¤

=
£
�3(3� 2�)� (1 + 2�)(1� �)3¤ �

2
�

�� [�4(�4)|�4] = Pr [�2� �3|�4]� [�4 (�4) |�4;�2� �3] + Pr
£
�2� �3|�4

¤
�
£
�4(�4)|�4;�2� �3

¤
�

�� [�4(�4)|�4] = Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

+Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
+Pr

£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

= Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + 3Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
	

�� [�3(�3)|�3] = Pr [�1� �2|�3]� [� (�3) |�3;�1� �2] + 2Pr
£
�1�2|�3

¤
�
£
� (�3) |�3;�1� �2

¤

=
£
�3(3� 2�)� (1 + 2�)(1� �)3¤ �

2
�

�� [�4(�4)|�4] = Pr [�2� �3|�4]� [�4 (�4) |�4;�2� �3] + Pr
£
�2� �3|�4

¤
�
£
�4(�4)|�4;�2� �3

¤
�

�� [�4(�4)|�4] = Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

+Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
+Pr

£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

= Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + 3Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

	

�� [�3(�3)|�3] = Pr [�1� �2|�3]� [� (�3) |�3;�1� �2] + 2Pr
£
�1�2|�3

¤
�
£
� (�3) |�3;�1� �2

¤

=
£
�3(3� 2�)� (1 + 2�)(1� �)3¤ �

2
�

�� [�4(�4)|�4] = Pr [�2� �3|�4]� [�4 (�4) |�4;�2� �3] + Pr
£
�2� �3|�4

¤
�
£
�4(�4)|�4;�2� �3

¤
�

�� [�4(�4)|�4] = Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

+Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤
+Pr

£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

= Pr [�1� �2� �3|�4]� [�4 (�4) |�4;�1� �2� �3] + 3Pr
£
�1� �2� �3|�4

¤
�
£
�4 (�4) |�4;�1� �2� �3

¤

as the signals of each player are of equal 
strength. After some manipulations we get
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Thus an agent with signal Si expects to get the 
following utility after she observes two prede-
cessors:
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It is possible that she would like to deviate by 
observing no predecessors and follow her own 
signal S. Her expected utility would then be

(        ) b. This deviation would not be profitable

if the cost of observing two predecessors is 
smaller than or equal to the expected gain from
the observations, i.e., if 1

4 (2–p) (2p–1) (p +1) b

– (       ) b ≥ 2g . This inequality simplifies to
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It is also conceivable that the agent wants to 
break k = 2 equilibrium by observing only one 
predecessor. The agent with signal S would then

again expect to receive ( 2p –1
2  

) b – g  if she were

first or second. If she were third she would ex-

pect to get ( 2p –1
2  

) b – g  as well. The reason is

that in an equilibrium where all agents observe 
two predecessors the first and second agents 
would learn their positions in the sequence and 
would follow their own signals. The fourth 
agent could benefit from the deviation. Her ex-
pected utility from observing only one prede-
cessor, given that all other agents observe two
predecessors, is b

2 (2p –1) (1+ p – p2 ) – g . This is
higher than her expected utility from the nonde-
viation. This can easily be explained as agent 
three has already based her decision on three 
signals. As observation is costly an agent who 
knows that she is fourth would thus observe 
only the third agent, and make the same choice 
(see e.g. Kultti and Miettinen (2006 a)). As the 
agent does not know her position in the se-

quence her expected utility from deviating and 
observing only one predecessor is
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The deviation is not profitable when 
b
4 (2 – p) (2p – 1) (p + 1)–2g  
– b

8 (2p – 1) (4 + p – p2) + g  ≥ 0.This simplifies to
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It is immediately clear that there is no profitable 
deviation from the k = 2 equilibrium to k = 3 or 
k = 4. The game has a pure strategy equilibrium 
for the positive values of g  when the most re-
strictive of (8) and (10) holds, i.e. when:
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We define low observation cost g  as such that 
(11) holds. The four player minigame then has 
an equilibrium where each agent observes the 
actions of two immediate predecessors. Note 
that due to the symmetric structure of the mod-
el the maximum cost of g  allowing for a k = 2 
equilibrium is the same regardless of whether 
the agent has received signal S or ®S.

3.3.2  A sequence with n agents

To derive the expected utility from observing 
the actions of predecessors becomes inconven
ient  when  n  is  larger  than  four.  We  therefore 
use a different approach to construct equilibri-
um.

We focus on the equilibrium where all agents 
observe two preceding agents (k = 2). We show 
that with g  small enough (defined later) there 
exists no profitable deviation to k = 1 or, in fact, 
any k ≠ 2. To find out under what parameter 
values it might be optimal for an agent i to devi-
ate from this equilibrium and observe the ac-
tions of only one predecessor we compare costs 
and expected gains from observing two prede-
cessors to those from observing only one pred-
ecessor.

An agent i observing two predecessors can 
see one of the following:

2p –1
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2
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If  the  agent  makes  any  of  the  last  three  obser-
vations she will know her position in the se-
quence and act according to her own signal. In 
the first and the fourth case the agent knows that 
a herd has formed (or that she should start one) 
and follows the action of her two predecessors 
regardless of her own signal. In cases two and 
three no herd has formed and the agent follows 
her own signal.

The idea is in the spirit of the equilibrium 
with adequately informed agents (see Kultti and 
Miettinen (2006b) for the application of this 
concept in a different setting). In the current 
setting an agent will observe two predecessors 
as opposed to one only in case she then can 
learn something new and behavior changing. 
Observing one predecessor and following her 
action would be optimal if agent i knew that she 
is in a herd. Observing two immediate predeces-
sors can be optimal only if it reveals enough 
new information for agent i to change her be-
havior (from what it was when she observed 
only one agent). This can be the case only when 
the actions of the two predecessors are opposite. 
These actions are different only when a herd has 
not formed before agent i – 1 acts.

The only way that a herd does not form is if 
sequential agents get opposite signals. The ac-
tions of the agents are then completely inform-
ative of their signals. The two different histories 
of signals leading to a herd not having formed 
before agent i are obviously:
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As stated above, observing the actions of two 
immediate predecessors (as opposed to one) can 
be beneficial to the agent only if it leads to a 
reversal of her action. Now assume that agent i 
has received signal Si Then the only way in 
which she could benefit from observing two 
predecessors instead of one would be if she ob-
served  ®Ai –1, Ai –2. She would learn that she is not 
in a herd and that including her own signal there 
are either equally many good and bad signals (if 

i is even) or one more good signal (if i is odd). 
Agent i would therefore change her behavior 
from  ®Ai to Ai.

Thus, with i even, the agents expected utility 
from adopting/buying would then be zero as all 
signals are of equal strength. With i odd there 
would be one more positive than negative signals 
in the sequence, the expected utility from adopt-
ing/buying would then be positive. This means 
that under the optimal decision the agent expect-
ed utility is higher if she observes two predeces-
sors as opposed to one if her position is third, 
fifth, seventh or any odd integer above that.

In a sequence with n > 2 players agent i would 
thus deviate from the tentative k = 2 equilibrium 
to k = 1 if the cost of one more observation g  is 
larger than the expected gain in utility at the 
optimal decision. With signal Si agent i would 
thus deviate only if
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As E [U (Ai) | Si ; Ai –2,  ®Ai –1] = 0 when i is even, 
we get the following expression
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where d = i – 2, (with the obvious changes if n 
is odd).

The agent does not deviate to k = 1 if obser-
vation costs are low i.e. if the following inequal-
ity holds

(16) 
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It is obvious that if (16) holds, a positive devia-
tion to k = 0 does not exist. It is still possible 
that the agent might want to deviate from the 
k = 2 equilibrium by observing the actions of 
more than two predecessors. Assume that an 
agent receives signal S, and observes the actions 
of two immediate predecessors. If both prede-
cessors have declined from buying, i.e. the ob-
servations are both  ®A, then the agent knows that 
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either both have received signal ®S or that a herd 
has started earlier. Therefore the expected util-
ity from adopting is at most zero and buying 
costly information on additional actions could 
not be profitable. If the actions of the two im-
mediate predecessors are different from each 
other, the agent knows that the only way for this 
to be possible is if the signals from the first 
agent onwards have been alternating. In this 
case the agent would follow his own signal as 
the expected utility from this is at least zero. 
Buying information on additional actions would 
again be costly without affecting the agent’s 
optimal decision. Therefore no profitable devia-
tion from the k = 2 equilibrium exists when ob-
servation costs are low as defined in (16).

4.  Uniqueness

Claim 3  When observation costs are low ob-
serving the actions of two predecessors is the 
unique pure strategy equilibrium.

In order to answer the question of whether there 
are equilibria for some k > 2, we first need to 
find out, if it is possible that sequences of two 
similar sequential actions can happen without 
this leading to a herd forming. If this is not pos-
sible for any k then it is clear that k > 2 cannot 
be   an   equilibrium   as   a   profitable   deviation   to 
k = 2 would then exist. It is immediately obvi-
ous that sequences of two similar actions 
followed  by  a  different  action  (hereafter  a  bro-
ken sequence)) cannot happen in equilibrium 
for k = 3.

For k ≥ 4 the following sequences become pos-
sible:

(17)  �1�2�3� �4���

�1�2� �3� �4���

and

(18) 

�1�2�3� �4���

�1�2� �3� �4���

These  sequences  are  possible  as  the  fourth 
agent would observe that she is fourth and 
would follow her own signal even after having 
seen A1,  ®A2,  ®A3 Assuming the signal of the fourth 
agent is S the fifth agent would observe A,  ®A,  ®A, 
A and figure out that the agent in front of her 

must have known that including her own signal 
there were equally many good signals as bad 
signals. Therefore the fifth agent would again 
act on her own signal.

In fact, the following observations can be 
made for k ≥ 4:

Assume all agents j ≠ i observe the actions of 
k predecessors i.e. play the k equilibrium. As-
sume further that agent i ’s signal is S

1.	 If a herd has formed before agent i then it is 
clear that agent i cannot do better than to fol-
low the herd.

2.	 If i ≤ k and the actions of i ’s predecessors 
alternate up to the two closest predecessors 
s.t.  ®Ai –2,  ®Ai –1 then agent i ’s expected utility 
from adopting is negative if i is odd or zero 
if i is even. This is clear as all actions before 
agent i would have revealed the signals of 
the agents. Then the agent cannot do better 
than to follow the actions of her two immedi-
ate predecessors. As she, however, already 
has tried to observe k predecessors she will 
follow her own signal if she learns that the 
expected utility from doing so is at least 
zero. In other words: if the agent learns that 
there are equally many good and bad signals 
she will act according to her own signal. 
Therefore broken sequences can form for 
i ≤ k. This means that an agent j observing 
agent i breaking a sequence will know that 
the sequence including agent i must have in-
cluded equally many good and bad signals.

3.	 Given 2, subsequent broken sequences can 
form if i > k and there are one or more bro-
ken sequences within the actions of agents 
{i – k, ..., i – 1}. These subsequent broken se-
quences must also start at an even i and can-
not encompass more than two actions. The 
broken sequences must be altering so that if 
the first encompasses actions AA then the 
second encompasses actions  ®A ®A. Also note 
that, as in 2, it follows that the agent who has 
broken a sequence must have had a signal 
opposite from that in the sequence and that 
including the last broken sequence there 
must be equally many good and bad sig-
nals.

4.	 If i > k and there have not been broken se-
quences A, A or  ®A ,  ®A  in the k first instances 
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of the sequence and agent i ’s two closest 
predecessors actions are  ®A i –2,  ®A i –1 then the 
utility from adopting is negative if i is odd or 
zero if i is even. This is due to the fact that 
all actions have been revealing as no herd 
has formed. As agent i has no way of know-
ing if she is odd or even, her expected utility 
from adopting is negative. Therefore she will 
follow the action of his two immediate pred-
ecessors and herd.

5.	 If i > k and there has been one or more bro-
ken sequences, but there are none for agents 
{i – k, ..., i – 1} and the actions of agent i ’s 
two closest predecessors are  ®A i –2,  ®A i –1, then 
agent i cannot expect to do better than by 
following the actions of her two immediate 
predecessors. This is clear, since up to and 
including the point where the last sequence 
of two similar actions was broken, there must 
have been equally many good and bad sig-
nals. Therefore if agent i doesn’t observe any 
broken sequences all actions from the last 
broken sequence to agent i must also have 
been informative. Therefore, there must be at 
least as many negative signals as positive 
signals in the sequence and agent i can not 
expect to do better than by following her two 
closest predecessors.

This means that with positive observation cost 
g  the agents have a profitable deviation from 
k > 2 to k = 2. We have in sections 3.1 and 3.2 
shown that when observation costs are low, nei-
ther k = 0 nor k = 1 can be equilibria. Thus we 
have shown that k = 2 is the unique equilibrium 
when observation costs are low.

5.  Conclusion

We have extended the model of herding with 
costly observation in Kultti and Miettinen 
(2006a) by relaxing the assumption that the 
agents know how many other agents have been 
in the same situation when they decide on how 
many predecessors to observe. This extension 
changes the result as herding now does not arise 
deterministically. We find that when observa-
tion costs are low there exists a unique sym-
metric pure strategy equilibrium where each 
agent observes the actions of only her two clos-
est predecessors in order to find out if there is a 
herd or not. A further topic could be to extend 
the model by characterizing the equilibria when 
we fix the observation cost g  and let n grow 
towards infinity. When observation costs are 
low, we then expect to find mixed equilibria 
with support consisting of observing zero, one 
and two immediate predecessors.
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Appendix 1

An example illustrating the maximal cost of observation allowing for a k = 2 equilibrium when 
n = 40 and b = 1.
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With p = 0.65, n = 40 and b = 1 the max value of g  allowing k = 2 to be an equilibrium is
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